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EXPLICIT/IMPLICIT CONSERVATIVE GALERKIN 
DOMAIN DECOMPOSITION PROCEDURES 

FOR PARABOLIC PROBLEMS 

CLINT N. DAWSON AND TODD F. DUPONT 

ABSTRACT. Several domain decomposition methods for approximating solu- 
tions of parabolic problems are given. These methods rely on implicit Galerkin 
procedures in the subdomains and explicit flux calculation on the inter-domain 
boundaries. The procedures are conservative both in the subdomains and across 
inter-domain boundaries. A priori error bounds and experimental results are 
presented. 

1. INTRODUCTION 

When solving parabolic partial differential equations using Galerkin finite el- 
ement procedures, it is frequently advantageous to use implicit time-stepping 
because of the severe time-step constraint needed to insure stability when using 
explicit time-stepping. Thus, a large, global system of equations must be solved 
at each time step. Domain decomposition procedures can be used to break these 
large computations into several smaller ones, but the smaller "subdomain prob- 
lems" must be coupled in some way. The procedures studied here use simple, 
explicit calculations on the boundaries between subdomains to predict the flux, 
and this is the only coupling between subproblems. Thus, these procedures are 
noniterative, and involve dividing the domain into nonoverlapping subdomains. 
The explicit nature of the flux prediction induces a time step limitation that is 
necessary to preserve stability, but this constraint is less severe than that which 
comes with a fully explicit method. 

Galerkin procedures are useful in situations that require nonrectangular ge- 
ometry, and the procedures given here allow considerable geometric flexibility. 
The function spaces used on the subdomains need not match up in such a way 
that they are restrictions of the same global subspace of HI, and the opera- 
tor used to approximate the flux does not have to match the grids used in the 
subdomains. 
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The a priori error bounds given here rely on previous work on elliptic Galerkin 
approximations. In fact, our theorems are stated in terms of the errors of certain 
elliptic approximations rather than powers of some asymptotic parameter. 

We exhibit second- and fourth-order correct boundary flux approximations. 
The analysis is done for arbitrary-order correct boundary flux approximations. 
The first results use a first-order time discretization, but the results in ?4 give a 
second-order in time approximation. 

Experimental results are also given. They show that the stability constraint 
is necessary, although not necessarily sharp. They also exhibit (on some exam- 
ple problems) asymptotic rates of convergence that are slightly better than are 
proved here. These experimental rates of convergence agree with what can be 
proved in some special cases. 

In a previous paper on finite differences [3], we coupled subdomains by ex- 
plicit predictions of boundary values, and this work was carried over to a finite 
element context in [2]. The new procedures given here offer greater geometric 
generality. They also have the advantage that they are conservative across the 
subdomains boundaries in the sense that the interior boundaries do not serve as 
sources or sinks. This conservation property is missing in our earlier schemes 
based on explicit interface value prediction. 

2. PRELIMINARIES 

Let Q denote a spatial domain in Rd. Denote by Hm (Q) and Wm (Q) the 
standard Sobolev spaces on Q, with norms I * I m and II- I Iom, respectively. 
Let LP (Q), p = 2, 00, denote the standard Banach spaces, with II I denoting 
the L2 norm and 11 * II,, the LI norm. 

Let [ce, ,6] c [O, T] denote a time interval and X = X(Q) a normed space. 
To incorporate time-dependence, we use the notation 11 II /3 ;X) to denote 
the norm of X-valued functions f with the map t '' I 4f(, t) lx belonging to 
LP(c, f3). 

Assume Q has a piecewise uniformly smooth Lipschitz boundary, aQ. As- 
sume that uO, a, and b are smooth, real-valued functions on Q, with a being 
positive and b nonnegative. For some T > 0, the function u(x, t) satisfies 

(2.1) a9u -V(aVu)+bu=O onQx (O, T], 

(2.2) = 0 on aQ x (O, T], 

(2.3) u(x, O) =-u(x) onQ, 

where nn is the outward normal to aQ. 
We use approximations of derivatives of delta functions at several points 

in this work, and these approximations can be viewed as coming from one- 
dimensional approximations of the delta function. For future reference we 
define two special functions 02 and 04 as follows: 

1x, 0<x< 1, 

02 (X) X+l - 1<x<0, 

0t O. otherwise, 
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(x-2)/12, 1 <x<2, 

-x) 4 + 7/6 0 < x < 1, 
04(X) = 5x/4 + 7/6, -1 < x < O. 

-(x + 2)/12, -2 < x < - 1, 
0 O. otherwise. 

Note that if p(x) is a polynomial of degree at most one, then 

(2.4) fP(X)02(x) dx = p(O), 

and if p is a polynomial of degree at most three, then 

JP(X)04(x) dx = p(O). 

3. DOMAIN DECOMPOSITION PROCEDURES 

In this section we consider the case of two subdomains, and we use a Galerkin 
procedure on each subdomain. As motivation for the abstract formulation pre- 
sented later we start with an example. For this example, use a _ b - 1 in 
(2.1). 

Let Q= (0, 1) x (0, 1). Take n1 = (0, 2) X (0, 1), Q2= (0 , 1) X (0, 1), 
and = {}x (0, 1). Define, for some H E (0, 2), 

(3.1) 0(X) = 02((X - )IH)IH. 

For j = 1, 2, let .#j be a finite-dimensional subspace of H'(Qj), and 
let X be the subspace of L2(Q) such that if v E X#, then v I E X# . Note 
that functions v in Xt have a well-defined jump [v] on I; [v](I, y) = 
V(2 + ?, Y) - V(2 - ?S Y) . 

Take the bilinear form D to be given by 
2 

(3.2) D(y/, P) =Z (VV * Vp + vp) dx dy. 

Define an approximate derivative as follows: 

(3.3) B(yi) ( y') = - j q$'(x) V/(x, y) dx, 

where 0 is given by (3.1). 
Let (, .)? be the L2(1) inner product, 

(3.4) (VIp P) = jvp. 

In the case I = Q we omit the subscript: 

(3.5) (,V, p) = (W. P)Q. 

Let 0 = tO < tI < ... < tM - T be a given sequence, and suppose that 
U0 E X is given. Define U1, ..., UM by 

(3.6) (atUl, v) + D(Ul, v) + (B(Ul-'), [v])r = O. V E X, 



24 C. N. DAWSON AND T. F. DUPONT 

where At, = t" - tn-I and 

(3.7) t9tU = (Un - Un-l)/Atn. 

This scheme has the property that Un can be computed on 01 and n2 com- 
pletely independently once B(Un-') has been computed on F. The flux at 
each point on F is computed explicitly from Un-I, and the two parts of Un 
are then computed using an implicit Galerkin backward difference equation on 
each nj. Note also that if the function v = 1 belongs to AV, then (3.6) is 
conservative in the following sense. If we use b _ 0 instead of 1, then the 
average value of Un is the same for all n, just as the average value of u(., t) 
is independent of t, by (2.1) and (2.2). 

For functions y, with restrictions in HI (ni) and HI (Q2), define 

(3.8) IIIt'1112 = D(og, ) + H-1 II'[]11L2(r)- 

Next, note that for such y,'s, 

(B(qI), [rV])r = - j 0'(x)q.'(x, y)[qi]( , 2y) dx dy 

(3.9) = H-1 jk[]2(l . y) dy 2 

+ j j (x) Vx(x y) dx[y]( , y) dy, 

and 

j j q$(x)lix(x, y) dx[yl](I , y) dy 

(3.10) <i l/XIIL2(Q, UL2) Ib7 IIL2(O, 1)II[t]IIL22(r) 
II VixIIL2(Q, Un2)((2/3H) 1II[1IVlIIL2(r)) 

From this result we get that 

(3.11) D(V , V) +(B(V) , [YV])r > (l-_ 1 //6)lI 11V/112; 
in deriving this, we used 

(3.12) af? < ea2 + f82/4e 

on the product in (3.10) with e2 = 6 
We restate (3.11) as 

(3.13) Illy/1112 < (1 - I/v"6)-'(D(V/ A ) + (B(V), [Vfi])r) 

* ~~~~< 1.7(D(V a V/) + (B(VJ) [YV])r) 

The following two bounds are straightforward: 

(3.14) IIB(Vf)II2(2) < 2H-3jj v 2, 

(3.15) IIB(Yf) I1L2(r) < 2H-'l11II,0 1 
Also, if V/ is smooth in Q, it follows from integration by parts, (2.4), and 
Taylor's Theorem that 

(3.16) B(lV)(2, y) = Vx(b , y) + j (x - s)Vxxx(I X s) ds q (x) dx. 
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Hence, it follows 

(3.17) 11vX ( *) - B(1)y I)L2(r) ? WH2 I:yxxxII 
To state an error bound for the procedure (3.6), we introduce an elliptic 

projection [6] W E -X of the solution u as follows: 
(3.18) D(u(., t) - W(., t), v) = 0, v e X. 

The function W at each t is just the HI (Qj) projection of u into Aj4 . Let 
the error in the projection be denoted by 
(3.19) n=u-W. 

Theorem 1. Suppose that the solution u is sufficiently smooth and that U0 E X 

is taken to be WO. Let At = maxn Atn. Then there exists a constant C, 
independent of the spaces #j, such that 

maxIlUn-UnII n 

(3.20) < C (At + H2.5 + T t)II dt + H11/2 IIIILoo(nX(OT))) 

provided that 

(3.21) At < H2/4. 

The procedure is first-order correct in At as expected, since this would be 
the case even if no domain decomposition were used. The second-order correct 
approximation B gives rise to the H2 5, since we only make the H2 error on a 
"small" set. The loss of H-1/2 in the last term in the estimate can be avoided 
in certain special cases using the techniques of [1], but at this level of generality 
we do not know how to improve this term. The theorem will follow as an easy 
consequence of Theorem 2 below. 

We now treat a more general case. The domain Q in Rd is divided into two 
nonoverlapping subdomains Q1 and Q2. The interface between these domains 

(3.22) I = Q n Q1 n n2 

is assumed to be a uniformly smooth (d - 1)-dimensional manifold. 
For functions Ag, p with restrictions in H' (j), let 

(3.23) D( I, p) = J (aVq * Vp + b yp) dx, 
Il UQ2 

and let the jump in such a V on F be denoted by [q]. For definiteness, let 
[ ] be the trace from Q2 minus the trace from 2, . 

We need a parametrized approximation to the normal derivative on F. As- 
sume for some H > 0 that B is a linear map of L2(Q) into L2(F) and that 
it satisfies the following four conditions, which are generalizations of (3.13), 
(3.14), (3.15), and (3.17): 

(i) There is a constant C0 such that 

(3.24) 1 1 V/ 1 2 < CO(D(VI OrV) + (aB(I) , [ V ])r), 
where 

(3.25) I 1 1 1 12 = D( g, VA) + H-1 (a[ VI], [VI])r. 
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(ii) There is a constant C1 such that 

(3.26) (aB(yi), B(yi))r < CiH-3Iy /112. 

(iii) There is a constant C2 such that 

(3.27) IIB(Y') 1L2(r) < C2H Il || IILoo(n) 
(iv) There is a constant k > 0 and a constant C3 which depends on the 

solution u such that 

(3.28) Ou(.t) B(u)(. , t) < C3Hk 
ay ~~~~~L2(r) 

for 0 < t < T, where Ou/Oy is the normal derivative of u on F, in the 
direction from Q1 to Q2 a 

Suppose that JIj is a finite-dimensional subspace of HI (Qj), and let X( 

be the set of L2(Q) functions whose restrictions to Qj belong to Aj. For 
= t? < t <. <tm= T and U?EJ( given, define U1,..., Um by 

(3.29) (OtUn, v) +D(Un, v) + (aB(Un-1), [V])r = -0 v Ef, 

where atUn is given by (3.7). 
Just as in the example, we define W(, t) E d( by 

(3.30) D((u - W)(., t), v) =0 v E , 

at each t E [0, T]. Let the error in the elliptic projection be denoted by 

(3.31) n = u- W. 

Theorem 2. Suppose that the solution u to (2.1) is sufficiently smooth and that 
U? = W(., 0). Let At = maxn Atn. Then there exists a constant C, indepen- 
dent of the spaces Ij, such that 

max||1(u -U)( tn) 11 n 

< C /t +H Hk+ 
1 /2 + | || t (. @ t)J|| d t + H 11/21 n1 L-(n x(O, T))}, 

provided 

(3.32) At < H2/CoCI. 

Note that there are no assumptions that require A, and A2 to be compatible 
in some way. Also, as we saw in the example, the H-parameter for the operator 
B is not necessarily related to any aspect of the spaces fj; in particular, it is 
not required that q restricted to Qj have any relation to A4 . 

Proof of Theorem 2. Note first that u satisfies 

(3.33) (atun , v) + D(un , v) + (a 
Oun 

, Iv]) (pn, v) , v E 4t, 

where un(x) = u(x, tn). The time truncation term pn satisfies 

M T 

(3.34) 1:IIIpnIlAtn <Atj Ilutt(., t)I1dt< CAt. 
n=l 



DOMAIN DECOMPOSITION PROCEDURES FOR PARABOLIC PROBLEMS 27 

From (3.33) and the definition of W we see that 

(atW', V) + D(W1, v) + (aB(Wn-1), [V])]r 

(3.35) = (pn-at7nn v)+ (a (BWn-l) I 9 ), Iv]) v E 

Let 

(3.36) V=U-W. 

This gives, from (3.29) and (3.35), 

(Otwn, v) + D(vn, v) + (aB(vn- 1) [V])r 

(3.37) ~= (atnn-pnv) + (a (u d~ B(Wn-1)) [v]) 

Let 

(3.38) i = a 
aun 

-B(Wn-i) 

Then 
a un _aun-1 aun- _ n-1 ) + B(nn- )) iO=a Ou 

a + 
ay B(un1+(1i 

From this it follows that 

(3.39) II6IIL2(r) < C(At + Hk + H- 1 IItn- II) 
Use v = Vn in (3.37) to see that 

(Otvn, vn) + D(Vn, vn) + (aB(vn), [vn])r 

(3.40) < (aB(in - vn-1), [vn]), + IlItrn + pnII IIvnI 
+ C(At + Hk + H-1 IIn-I Ioo)H1/2IIIvIII. 

Since (ca - fi)ca = 1 (a2 _ f82) + I (a - fl)2, we see that 

(3.41) (Otvn, vn) =Ot(IIV nI2) + 2 IIa11tvn2. 

Use this and (3.24) in (3.40) to see that 

at(IIvnII2) + AtnllatvnII2 + 2 1112 

< 2Cl1/2H1-AtnllItvlnll IIIvnIII + 21attln + pnII IIvnII 

(3.42) + C(At + Hk + H- IIt n- I IIoo)H1 /2IIIn III 
2 nIII2 + (CoCiH-2Atn)AtnII atII2 

+ 2IIattn + pnII IIv'1nI + C(At + Hk + H-1II n-,1I)2H. 

Provided 

(3.43) Atn < H2/CoC, 

we see that 

(3.44) at(IIVn 112) < 21IIttn + pnII IIvnII 
+ C(At2H + H2k+ + H-1 II n- II)2 
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From this we see that, by multiplying by Atn and summing on n, 

2 M 

(max I|vnII) < IIVAII2 + 2 Z Itn + pn lII v1nIIAtn 
n=1 

+ C(At2H + H2k+l + H 1 II11IIL(x(2 T))) - 

Use vo 0 and 
M M 

2 II ) n + pnII IIvnI IAtn < 2max I EIVnII Z t I I at + p IIAtn 
(3.46) n=1 n=1 2 

< (max IIvnII) + 14 II9tfn + pnhIAtn) 

to see that 

max II>nII < C (At + Hk+112 + H 11/211 nI IL?(Q x(0, T)) 

(3.47) T 

+| 11 (*t) 11dt. 

Here we have also used (3.34). The conclusion follows from the triangle in- 
equality. 0 

The bound (3.43) (and hence (3.32)) can be relaxed by almost a factor of 
two, at the expense of a larger constant in the last term (3.42). The L?? bound 
on n is needed near F in the examples of B with which we have worked; away 
from F, an L2 bound can be used instead. 

Note that the projection W has no dependence on H, and this implies that 
n has no H-dependence. From this observation it follows that we can allow H 
to vary from step to step, provided only that 

(3.48) Atn < H /CoC1. 

Return to consideration of the example problem used to introduce this sec- 
tion. Define B using b4 of ?2 by taking 0(x) = q4((X - I)/H)/H. Now 
we need H E (0, 4). Then calculation gives that (3.24), (3.26), and (3.27) 
hold with Co = 1.64, C1 = 3.14, and C2 = 3. Thus, Theorem 2 requires 
At < H2/5.15. In this case (3.28) holds with k = 4. 

4. A SECOND-ORDER IN TIME PROCEDURE 

In this section we illustrate the use of a second-order in time backward dis- 
cretization using the Galerkin-based procedure of ?3. We restrict attention to 
the case of uniform time steps tn = nAt. The context used here is that of 
Theorem 2; i.e., we allow variable coefficients, Q C Rd, and F is a smooth 
(d - 1)-dimensional manifold. 

The results of this section are slightly related to the results in [5], where energy 
methods are used on second-order backward difference Galerkin methods (and 
blending methods). In [5], variable time steps are analyzed, but not in a domain 
decomposition context. 
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Let 

(4.1) 62 U = AtUn + I (atOUn -atUn-1) 

Assume that U0 and U1 in X# are known, and define U2,..., Um by the 
following analogue of (3.29): 

(4.2) (52Un, v) + D(Un, v) + (B(2Un-1 Un-2), [V])r = 0, v E X . 

This procedure is formally second-order correct in time, and like (3.29), it al- 
lows the calculation of Un to be done independently on nj and Q2 once the 
operator B has been evaluated on IF using 2Un-1 - Un-2 

The analogue of Theorem 2 is the following: 

Theorem 3. Take W and n as in (3.30) and (3.31) and let B satisfy (3.24), 
(3.26), (3.27), and (3.28). Suppose that the solution u of (2.1) is sufficiently 
smooth and that U0 = W(., 0) and U1 = W(., At). Then there is a constant 
C, independent of the spaces 1j, such that Un given by (4.2) satisfies 

max I(u - U) (., tn) II 
n 

< C {At 2 + k+ l/2 + | ||t( t) II dt + H- 1/2 I1IIjLo(nx(},T)) 

provided 

(4.3) At < H2/2CoC1. 

Of course, it is unlikely that we could take UO and U1 exactly as indicated 
in the theorem. The proof will show that U0 and U1 need only approximate 
these values in a certain sense, but we will not give the details of that result. 

Proof of Theorem 3. In analogy with (3.33) we see that 

(4.4) (62 un, v) +D(un v) + auny ,[] (pn , v), v , 

where 
M T 

(4.5) E1: jpnjjlAt < C(At)2 | Iluttt( ( t)JI1 dt < C(At)2 . 

Thus, 

(G2Wna v) + D(Wn, v) + (aB(2Wn-I - 
Wn-2) [V])A 

(4.6) = (pn - 62n, v) + (a (B(2Wn-1 - Wn-2) - )un [vI 

v E - g. 

Use 
aun 

-B(2Wn-' Wn-2) 

(4.7) a (un - 2un- + + un-2+ (2Un-[ _ Un 22 

+ B(2tn-1 - ,1fln2) 
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to get 

(62v0, v0) + D(vO, v") + (aB(vn), [vn])r 
(4.8) = (aB(vn - 2Vn-1 + Vn-2), [vn])r + 1jj2,n + pnljI luVnI 

+ C((A&t)2 + Hk + H-1(II7,n-111oo + IInn-2Iloo))H112IIIvnIII. 
To replace (3.41), we use 

(4.9) (62vn, vn) = 9tE(vn, vn-) + (vn- 2vn-l +vn-2)2 

where 

(4.10) E(yi, ju) = I(ll ll2 + 112v, _,112) > I lv'112. 
The first term on the right side of (4.8) is bounded by 

COH (aB(vn - 2vn-1 +vn-2), B(vn - 2vn-l + vn-2)), + 
2C 

livnlll2 

< ?2 CiH-3llvn - 2vn-l + on-2ll2 + 15uulVnIhl2 

where (3.26) was used to introduce C1. To complete the proof, follow the 
proof of Theorem 2. 0 

The critical step in determining the At-constraint is the relation 
1 /C0H (C1\>0 

4At _ 2) ( ) >0 . 

This gives 

(4.11) At < H2/2CoCI; 

just as in Theorem 2, this could be relaxed by almost a factor of two. 

5. NUMERICAL EXPERIMENTS 

In this section we present the results of some numerical experiments for the 
Galerkin procedure described above. 

First, we study the sensitivity of the scheme to the At-H constraint. Consider 
(2.1) on the unit interval in R with a = 1 and b = 0. Recall that, for purposes 
of L2-stability, the constraint is of the form 

(5.1) At<H2/2. 

We take as initial data the function u? given in Figure 1. At steady-state, the 
solution u(x, t) f U0O (x). We apply the Galerkin procedure (3.3), (3.6) to 
this problem, taking four subdomains. The L2 norm of the solution for two 
different values of At/H2 is given in Figure 2. Here it can be seen that when 
(5.1) is violated by as much as a factor of two, IIU(., t)ll blows up as time 
increases. 

Next, we study the experimental rate of convergence of the scheme. As re- 
marked earlier, in certain instances a better rate of convergence than that pre- 
dicted by Theorem 2 can be proven. However, for piecewise linear approximat- 
ing spaces and B(y) based on bk, k = 2 or 4, we expect the rate of convergence 
to be at best quadratic in h and order k + 1 in H, based on the truncation 
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FIGURE 1 
Initial data for stability test 

error of the scheme and the fact that the support of qk is (H) . Determining 
the sharpness of the estimates in general will be the subject of future work. 

In these runs, a = 1 and b = O, and Q = (O, 1) x (O, 1). The solution u is 
approximated in the space of continuous piecewise linears in x tensored with 
continuous piecewise linears in y. We consider three scenarios: 

1. Fully implicit Galerkin on uniform mesh; i.e., no domain decomposi- 
tion; 

2. Galerkin domain decomposition with four subdomains, with interfaces 
JL = {i/4} x (O, 1), i = 1, 2, 3, and with global uniform mesh; 

3. Galerkin domain decomposition with three subdomains Qi, i = 1 ,2, 3, 
with interfaces I" = {0.3} x (0, 1) and I2 = {0. 55} x (0, 1) . The mesh 
is uniform in y and in x on each subdomain but not uniform across 
subdomains. 

First, consider 

(5.2) 
Ut - Au = 

_ 

(u(x, y) - u(x, y) = cos(27rx)cos(7ry), 
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- dt/HO2 =^.35 

...... dt/HW*2 1.00 
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0.0 0.12 0.25 0.37 0.5 

FIGURE 2 
Stability of domain decomposition solution: UIIU vs. time 

which gives the solution u(x, y, t) uI(x, y, t) = e-52tUO (x, y). We ap- 
proximate u on 40 x 40, 80 x 80, and 160 x 160 grids. In the third scenario 
above, the coarsest mesh in the x-direction is 3 in ll, IL in L2, and 9 

160 32 ' 320 
in Q3 . All subsequent meshes are obtained by halving this mesh. In Table 1, 
we give the L2 error for eh = u- U for each scenario listed above, at time 
T = .03. In these runs, At - 4h2, and H = 4h. In each case, the error is 
approaching second order as the grid is refined; however, as seen in Table 1, h 
needs to be smaller to get into the asymptotic range for the domain decompo- 
sition approach. The rate here is computed by observing that eh Chq and 
doing a least squares fit to determine q . It is curious to note that the errors in 
the domain decomposition cases are smaller than the errors for the fully implicit 
scheme. 

In Table 2, we compare the error obtained when computing the derivative 
using 04 versus b2, for the three-subdomain case. Here we see that, in this 
particular case at least, the overall error is not reduced substantially by the extra 
accuracy of 044. 
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TABLE 1 
Convergence in h: u(x, t) = ul(x, y, t) 

Implicit DD-4 s.d. DD-3 s.d. 

h-1, H eh * i04 Rate eh * i04 Rate eh * 04 Rate 

40, .1 94.24 _ 54.50 _ 74.95 _ 

80, .05 24.30 - 18.60 - 21.37 - 

160, .025 6.11 1.97 5.38 1.67 5.71 1.88 

320, .0125 - - 1.44 1.75 - _ 

TABLE 2 

02 VS. 04: U(X,y, t)=Ul(x,y, t) 

DD-3 s.d. 

h eh * 104 : 02 eh * 104: 04 

40 77.60 70.10 

80 21.60 19.70 

160 5.71 5.70 

TABLE 3 
Convergence in h: u(x, y, t) = U2(X, y, t) 

Implicit DD-4 s.d. DD-3 s.d. 

S h-1, H eh * 104 Rate eh * 104 Rate eh * 104 Rate 

20, .1 80.65 - 79.90 - 85.07 _ 

40, .05 20.20 - 19.20 - 21.25 

80, .025 5.05 2.00 4.87 2.00 5.37 2.00 

Next, consider 

(5.3) ut-Au=f(x,y, t), U0(Xy)=0, 

where f is chosen so that u(x, y, t) U2(X, y, t) = lOOtX3(1 -x)2cos(27ry) . 
We perform similar experiments in this case, with final time T = .5. The 
results are given in Table 3. Again, second-order convergence in h is seen. 

We now study the rate of convergence in H. Return to (5.2) and consider 
the third scenario above, with three subdomains. We take h-' = 320 and 
At = 4/3202. The underlying mesh in Kl and Q3 is 128 x 320, while the 
underlying mesh in Q2 is 64 x 320. We compare the errors for H-1 5, 10, 
and 20 in Table 4. Assume the error is of the form 

(5.4) eH =eh +CHP. 
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TABLE 4 
Convergence in H: u(x, y, t) =ui(x, y, t) 

DD-3 s.d. 

H-l1 elf * 104 

5 94.40 

10 12.80 

20 2.52 

By numerical experimentation, letting H -O 0, we found eh 1.48 * 10-4. 
Performing a least squares fit of the error based on (5.4), 

eH - 1. 48 * 10-4 + 1.80H3.24 

Thus, cubic accuracy in H is observed. 
In conclusion, for the test problems presented here, the method exhibits better 

accuracy than predicted by the theorems. In the case of uniform global mesh, 
such as used in scenario 2, the improvement in h can be explained by arguments 
given in [1], as mentioned earlier. The improvement in H can be explained 
by one-dimensional arguments given in [4]. The improved convergence rates 
for the third scenario are more mysterious, however. In future work, we will 
attempt to address these and other issues. The point to note is that the algorithm 
performs quite well and is a viable procedure for solving parabolic equations 
on coarse-grain parallel computers. 
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